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Abstract
We review and extend recent findings of Godsil and Zaks, who published a
constructive colouring of the rational unit sphere with the property that for any
orthogonal tripod formed by rays extending from the origin of the points of the
sphere, exactly one ray is red, one white and one black. They also showed that
any consistent colouring of the real sphere requires an additional colour. We
discuss some of the consequences for the Kochen–Specker theorem.

PACS numbers: 0365B, 0210B, 0210G

1. Colourings

In what follows we shall consider ‘rational rays’. A ‘rational ray’ is the linear span of a
non-zero vector of Qn ⊂ Rn.

Let p be a prime number. A colouring of the rational rays of Rn, n � 1, using
pn−1 + pn−2 + · · · + 1 colours can be constructed in a straightforward manner. We refer
to [3–5] for the theoretical background of the following construction.

Each rational ray is the linear span of a vector (x1, x2, . . . , xn) ∈ Zn, where x1, x2, . . . , xn

are coprime. Such a vector is unique up to a factor ±1.
Next, let Zp be the field of residue classes modulo p. The vector space Zn

p has pn − 1
non-zero vectors; each ray through the origin of Zn

p has p − 1 non-zero vectors. So there are
exactly (pn − 1)/(p − 1) = pn−1 + pn−2 + · · · + 1 distinct rays through the origin which can
be coloured with pn−1 + pn−2 + · · · + 1 distinct colours.

Finally, assign to the ray Sp(x1, x2, . . . , xn) (‘Sp’ denotes linear span) the colour of the ray
of Zn

p which is obtained by taking the modulus of the coprime integers x1, x2, . . . , xn modulo p.

4 To whom correspondence should be directed.
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Figure 1. The projective plane over Z2 and the reduced colouring
scheme discussed.

Observe that x1, x2, . . . , xn cannot vanish simultaneously modulo p and that ±(x1, x2, . . . , xn)

yield the same colour. Obviously, all pn−1 + pn−2 + · · · + 1 colours are actually used.
In what follows, we consider the case p = 2, n = 3. Here all rational rays Sp(x, y, z) (with

x, y, z ∈ Z coprime) are coloured according to the property of which of the components x, y, z

are even (E) and odd (O). There are exactly seven of such triples OEE, EOE, EEO, OOE, EOO,
OEO, OOO which are associated with one of seven different colours #1, #2, #3, #4, #5, #6, #7.
Only the EEE triple is excluded. Those seven colours can be identified with the seven points
of the projective plane over Z2; cf figure 1.

Next, we restrict our attention to those rays which meet the rational unit sphere S2 ∩ Q3.
The following statements on a triple (x, y, z) ∈ Z3 \ {(0, 0, 0)} (not necessarily coprime) are
equivalent:

(i) The ray Sp(x, y, z) intersects the unit sphere at two rational points; i.e. it contains the
rational points ± (x, y, z) /

√
x2 + y2 + z2 ∈ S2 ∩ Q3.

(ii) The Pythagorean property holds, i.e., x2 + y2 + z2 = n2, n ∈ N .

This equivalence can be demonstrated as follows. All points on the rational unit sphere can be

written as r = (
a
a′ ,

b
b′ ,

c
c′
)

with a, b, c ∈ Z, a′, b′, c′ ∈ Z \ {0}, and
(

a
a′
)2

+
(

b
b′
)2

+
(

c
c′
)2 = 1.

Multiplication of r with a′2b′2c′2 results in a vector of Z3 satisfying (ii). Conversely, from
x2 + y2 + z2 = n2, n ∈ N , we obtain the rational unit vector

(
x
n
,

y

n
, z

n

) ∈ S2 ∩ Q3.
Notice that this Pythagorean property is rather restrictive. Not all rational rays intersect

the rational unit sphere. For a proof, consider Sp(1, 1, 0) which intersects the unit sphere at
±(1/

√
2)(1, 1, 0) ∈ S2 ∩ Q3. Although both the set of rational rays as well as S2 ∩ Q3 are

dense, there are ‘many’ rational rays which do not have the Pythagorean property.
If x, y, z are chosen coprime then a necessary condition for x2 + y2 + z2 being a non-zero

square is that precisely one of x, y and z is odd. This is a direct consequence of the observation
that any square is congruent to 0 or 1, modulo 4, and from the fact that at least one of x, y

and z is odd. Hence our colouring of the rational rays induces the following colouring of the
rational unit sphere with those three colours that are represented by the standard basis of Z3

2 :

colour #1 if x is odd, y and z are even,
colour #2 if y is odd, z and x are even,
colour #3 if z is odd, x and y are even.

All three colours occur, since the vectors of the standard basis of R3 are coloured
differently.

Suppose that two points of S2 ∩ Q3 are on rays Sp(x, y, z) and Sp(x ′, y ′, z′), each with
coprime entries. The inner product xx ′ +yy ′ + zz′ is even if and only if the inner product of the
corresponding basis vectors of Z3

2 is zero or, in other words, the points are coloured differently.
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In particular, three points of S2 ∩ Q3 with mutually orthogonal position vectors are coloured
differently.

From our considerations above, three colours are sufficient to obtain a colouring of the
rational unit sphere S2 ∩ Q3 such that points with orthogonal position vectors are coloured
differently, but clearly this cannot be accomplished with two colours. So the ‘chromatic
number’ for the rational unit sphere is three. This result is due to Godsil and Zaks [1]; they
also showed that the chromatic number of the real unit sphere is four. However, they obtained
their result in a slightly different way. Following [4] all rational rays are associated with three
colours by making the following identification:

#1

#2 = #4

#3 = #5 = #6 = #7.

This three-colouring has the property that coplanar rays are always coloured by using only two
colours; cf figure 1. According to our approach this intermediate 3-colouring is not necessary,
since rays in colours #4, #5, #6, #7 do not meet the rational unit sphere.

1.1. Reduced two-colouring

As a corollary, the rational unit sphere can be coloured by two colours such that, for any
arbitrary orthogonal tripod spanned by rays through its origin, one vector is coloured by colour
#1 and the other rays are coloured by colour #2. This can be easily verified by identifying
colours #2 & #3 from the above scheme. (Two equivalent two-colouring schemes result from
a reduced chromatic three-colouring scheme by requiring that colour #1 is associated with x

or y being odd, respectively.)
Kent [6] has shown that there also exist dense sets in higher dimensions which permit a

reduced two-colouring. Unpublished results by Ovchinnikov, Okunev and Mushtari [7] state
that the rational d-dimensional unit sphere is d-colourable if and only if it admits a reduced
two-colouring if and only if d < 6.

1.2. Denseness of single colours

It can also be shown that each colour class in the above colouring schemes is dense in the
sphere. To prove this, Godsil and Zaks consider α such that sin α = 3

5 and thus cos α = 4
5 . α

is not a rational multiple of π ; hence sin(nα) and cos(nα) are non-zero for all integers n. Let
F be the rotation matrix about the z-axis through an angle α; i.e.,

F =
( cos α sin α 0

− sin α cos α 0
0 0 1

)
.

Then the image I , under the powers of F , of the point (1, 0, 0) is a dense subset of the equator.
Now suppose that the point u = (

a
c
, b

c
, 0
)

is on the rational unit sphere and that a, c are
odd and thus b is even. In the colouring scheme introduced above, u has the same colour as
(1, 0, 0) (identify a = c = 1 and b = 0); and so does Fu. This proves that I (the image of
all powers of F of the points u) is dense. We shall come back to the physical consequences of
this property later.

In the reduced two-colour setting, if the two ‘poles’ ±(0, 0, 1) acquire colour #1, then
the entire equator acquires colour #2. Thus, for example, for the two tripods spanned by
{(1, 0, 0), (0, 1, 0), (0, 0, 1)} and {(3, 4, 0), (−4, 3, 0), (0, 0, 1)}, the first two legs have colour
#2, while (0, 0, 1) has colour #1.
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1.3. The chromatic number of the real unit sphere in three dimensions is four

A proof that four colours suffice for the colouring of points of the unit sphere in three dimensions
is constructive and rather elementary. Consider first the intersection points of the sphere with
the x-, y- and z-axes, coloured by green, blue and red, respectively. There are exactly three
great circles which pass through two of these three pairs of points. The great circles can be
coloured with the two colours used on the four points they pass through. The three great circles
divide the sphere into eight open octants of equal area. Four octants, say, in the half space
z > 0, are coloured by the four colours red, white, green and blue. The remaining octants
obtain their colour from their antipodal octant.

Although Godsil and Zaks [1] paper is not entirely specific, it is easy to write down an
explicit colouring scheme according to the above prescription. Consider spherical coordinates:
let θ be the angle between the z-axis and the line connecting the origin and the point, and ϕ

be the angle between the x-axis and the projection of the line connecting the origin and the
point onto the x–y-plane. In terms of these coordinates, an arbitrary point on the unit sphere
is given by (θ, ϕ, r = 1) ≡ (θ, ϕ).

• The colours of the cartesian coordinate axes (π/2, 0), (π/2, π/2), (0, 0) are green, blue
and red, respectively.

• The colour of the octant {(θ, ϕ) | 0 < θ � π/2, 0 � ϕ < π/2} is green.

• The colour of the octant {(θ, ϕ) | 0 � θ < π/2, π/2 � ϕ � π} is red.

• The colour of the octant {(θ, ϕ) | 0 < θ < π/2, π < ϕ < 3π/2} is white.

• The colour of the octant {(θ, ϕ) | 0 < θ � π/2, −π/2 � ϕ < 0} is blue.

• The colours of the points in the half space z < 0 are inherited from their antipodes. This
completes the colouring of the sphere.

The fact that three colours are not sufficient is not so obvious. Here we shall not review
the proof of Godsil and Zaks based on a paper by Hales and Straus [4], but refer to a result
of Kochen and Specker [2], which is of great importance in the present debate on hidden
parameters in quantum mechanics. They have proven that there does not exist a reduced two-
colouring, also termed valuation, on the one-dimensional subspaces of real Hilbert space in
three dimensions.

Recall that a reduced two-colouring of the one-dimensional linear subspaces with two
colours could immediately be obtained from any possible appropriate colouring of the sphere
with three colours by just identifying two of the three colours. Thus, the impossibility of a
reduced two-colouring implies that three colours are not sufficient for an appropriate colouring
of the three-dimensional real unit sphere. (‘Appropriate’ here means: ‘points at spherical
distance π/2 get different colours’.)

In the same article [2], Kochen and Specker gave an explicit example (their �3) of a finite
point set of the sphere with weaker properties which suffice just as well for this purpose: the
structure still allows for a reduced two-colouring, yet it cannot be coloured by three colours.
(The authors did not mention nor discuss this particular feature [9].)

The impossibility of a reduced two-colouring also rules out another attempt to ‘nullify’
the Kochen–Specker theorem by identifying pairs of colours of an appropriate four-colouring
of the real unit sphere. Any such identification would result in tripods coloured by #1–#2–#2,
as well as for instance #1–#1–#2, which is not allowed for reduced colouring schemes, which
requires colourings of the type #1–#2–#2.
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2. Physical aspects

2.1. Physical truth values

Based on the results of Godsil and Zaks [1], Meyer [10] suggested that the physical impact
of the Kochen–Specker theorem [2] is ‘nullified,’ since for all practical purposes it is
impossible to operationalize the difference between any dense set of rays and the continuum
of Hilbert space rays (see also the subsequent papers by Kent [6] and Clifton and Kent [11]).
However, for the reasons given below, the physical applicability of these constructions remain
questionable.

Let us re-state the physical interpretation of the colouring schemes discussed above. Any
linear subspace Sp r of a vector r can be identified with the associated projection operator Er

and with the quantum mechanical proposition ‘the physical system is in a pure state Er’ [12].
The colouring of the associated point on the unit sphere (if it exists) is equivalent with a
valuation or two-valued probability measure

Pr : Er �→ {0, 1}
where 0 ∼ #2 and 1 ∼ #1. That is, the two colours #1, #2 can be identified with the classical
truth values: ‘It is true that the physical system is in a pure state Er’ and ‘It is false that the
physical system is in a pure state Er,’ respectively.

Since, as has been argued before, the rational unit sphere has chromatic number three, two
colours suffice for a reduced colouring generated under the assumption that the colours of two
rays in any orthogonal tripod are identical. This effectively generates consistent valuations
associated with the dense subset of physical properties corresponding to the rational unit
sphere [10].

Kent [6] has shown that there also exist dense sets in higher dimensions which permit a
reduced two-colouring. Unpublished results by Ovchinnikov, Okunev and Mushtari [7] state
that the rational unit sphere of the d-dimensional real Hilbert space is d-colourable if and only
if it admits a reduced two-colouring if and only if d < 6.

2.2. Sufficiency

The Kochen–Specker theorem deals with the nonembedability of certain partial algebras—in
particular the ones arising in the context of quantum mechanics—into total Boolean algebras.
0−1 colourings serve as an important method of realizing such embeddings: e.g., if there are a
sufficient number of them to separate any two elements of the partial algebra, then embedability
follows [2,13,14]. Kochen and Specker’s original paper [2] contains a much stronger result—
the nonexistence of 0 − 1 colourings—than would be needed for nonembedability. However,
the mere existence of some homomorphisms is a necessary but insufficient criterion for
embedability. The Godsil and Zaks construction merely provides three homomorphisms which
are not sufficient to guarantee embedability. This has already be pointed out by Clifton and
Kent [11].

2.3. Continuity

The regress to unsharp measurements is rather questionable and would allow total arbitrariness
in the choice of approximation. That is, due to the density of the colouring, depending on which
approximation is chosen, one predicts different results. The probabilities resulting from these
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truth assignments are noncontinuous and arbitrary. This is even more problematic if one
realizes that the each colour of the 0 − 1 colouring of the rational unit sphere is dense.

2.4. Closedness

The rational unit sphere is not closed under certain geometrical operations such as taking an
orthogonal ray of the subspace spanned by two non-collinear rays (the cross product of the
associated vectors). This can be easily demonstrated by considering the two vectors(

3
5 , 4

5 , 0
) (

0, 4
5 , 3

5

) ∈ S2 ∩ Q3.

The cross product thereof is(
12
25 , −9

25 , 12
25

) ∈ S2 ∩ Q3.

Indeed, if instead of S2 ∩ Q3 one would start with three non-orthogonal, non-collinear
rational rays and generate new ones by the cross product, one would end up with all rational
rays [15].

In the Birkhoff–von Neumann approach to quantum logics [16], this non-closedness under
elementary operations such as the nor-operation might be considered a serious deficiency
which rules out the above model as an alternative candidate for Hilbert space quantum
mechanics. (However, his argument does not apply to the Kochen–Specker partial algebra
approach to quantum logic, since there operations among propositions are only allowed if the
propositions are comeasurable.)

Informally speaking, the relative (with respect to other sets such as the rational rays)
‘thinness’ guarantees colourability. In such a case, the formation of finite cycles such as the
ones introduced by Kochen and Specker [2] are impossible.

To put it differently: given any nonzero measurement uncertainty ε and any non-colourable
Kochen–Specker graph �(0) [2,17], there exists another graph (in fact, a denumerable infinity
thereof) �(δ) which lies inside the range of measurement uncertainty δ � ε (and thus cannot be
discriminated from the non-colourable �(0)) which can be coloured. Such a graph, however,
might not be connected in the sense that the associated subspaces can be cyclically rotated
into itself by local transformation along single axes. The set �(δ) might thus correspond to a
collection of tripods such that none of the axes coincides with any other, although all of those
non-identical single axes are located within δ apart from each other. Indeed, this appears to be
precisely how the Clifton–Kent construction works [11, p 2104].

The reason why a Kochen–Specker-type contradiction does not occur in such a scenario is
the impossibility to ‘close’ the argument; to complete the cycle: the necessary propositions are
simply not available in the rational sphere model. For the same reason, an equilateral triangle
does not exist in Q2 [9]. Yet, while these findings seem to contradict the conclusions of Clifton
and Kent [11], we would like to emphasize that this does not relate to their formal arguments
but rather is a matter of interpretation and a question of how much should be sacrificed for
value definiteness.

Thus, although the colourings of rational spheres offer a rather unexpected possibility to
define consistent classical models, a closer examination shows that any such colourings should
be excluded for physical reasons.
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